39 research outputs found

    Regional variability in peatland burning at mid- to high-latitudes during the Holocene

    Get PDF
    Acknowledgements This work developed from the PAGES (Past Global Changes) C-PEAT (Carbon in Peat on EArth through Time) working group. PAGES has been supported by the US National Science Foundation, Swiss National Science Foundation, Swiss Academy of Sciences and Chinese Academy of Sciences. We acknowledge the following financial support: UK Natural Environment Research Council Training Grants NE/L002574/1 (T.G.S.) and NE/S007458/1 (R.E.F.); Dutch Foundation for the Conservation of Irish Bogs, Quaternary Research Association and Leverhulme Trust RPG-2021-354 (G.T.S); the Academy of Finland (M.V); PAI/SIA 80002 and FONDECYT IniciaciĂłn 11220705 - ANID, Chile (C.A.M.); R20F0002 (PATSER) ANID Chile (R.D.M.); Swedish Strategic Research Area (SRA) MERGE (ModElling the Regional and Global Earth system) (M.J.G.); Polish National Science Centre Grant number NCN 2018/29/B/ST10/00120 (K.A.); Russian Science Foundation Grant No. 19-14-00102 (Y.A.M.); University of Latvia Grant No. AAp2016/B041/Zd2016/AZ03 and the Estonian Science Council grant PRG323 (TrackLag) (N.S. and A.M.); U.S. Geological Survey Land Change Science/Climate Research & Development Program (M.J., L.A., and D.W.); German Research Foundation (DFG), grant MA 8083/2-1 (P.M.) and grant BL 563/19-1 (K.H.K.); German Academic Exchange Service (DAAD), grant no. 57044554, Faculty of Geosciences, University of MĂŒnster, and Bavarian University Centre for Latin America (BAYLAT) (K.H.K). Records from the Global Charcoal Database supplemented this work and therefore we would like to thank the contributors and managers of this open-source resource. We also thank Annica Greisman, Jennifer Shiller, Fredrik Olsson and Simon van Bellen for contributing charcoal data to our analyses. Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewedPostprin

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    Get PDF
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (∌9–6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires

    Mid-Devensian climate and landscape in England : new data from Finningley, South Yorkshire

    Get PDF
    While there is extensive evidence for the Late Devensian, less is known about Early and Middle Devensian (approx. 110–30 ka) climates and environments in the UK. The Greenland ice-core record suggests the UK should have endured multiple changes, but the terrestrial palaeo-record lacks sufficient detail for confirmation from sites in the British Isles. Data from deposits at Finningley, South Yorkshire, can help redress this. A channel with organic silts, dated 40 314–39 552 cal a BP, contained plant macrofossil and insect remains showing tundra with dwarf-shrub heath and bare ground. Soil moisture conditions varied from free draining to riparian, with ponds and wetter vegetated areas. The climate was probably low arctic with snow cover during the winter. Mutual climatic range (MCR), based on Coleoptera, shows the mean monthly winter temperatures of −22 to −2°C and summer ones of 8–14°C. Periglacial structures within the basal gravel deposits and beyond the glacial limits indicate cold-climate conditions, including permafrost. A compilation of MCR reconstructions for other Middle Devensian English sites shows that marine isotope stage 3—between 59 and 28 ka—experienced substantial variation in climate consistent with the Greenland ice-core record. The exact correlation is hampered by temporal resolution, but the Finningley site stadial at approximately 40 ka may correlate with the one of the Greenland stadials 7–11

    A Late Weichselian Stable-Isotope Stratigraphy Compared with Biostratigraphical Data - A Case-Study from Southern Sweden

    No full text
    Late Weichselian lake sediments from a site in southern Sweden, were analysed for stable carbon and oxygen isotopes, as well as plant macrofossils and insect remains. By comparison of independent data sets, general climatic changes were demonstrated. Lithological, chemical and stable isotope data reveal two significant climatic oscillations at ca. 12 200-12 000 and ca. 11 000-10 200 yr BP respectively. Continental climatic conditions, indicated by evaporative enrichment of O-18 in lake marl, characterise parts of the early lake history, including the Older Dryas Stadial. Distinct variations of deltaC-13 in organic material is discussed in terms of climatically induced changes in lake-water chemistry. Different types of photosynthetic assimilation of dissolved inorganic carbon is proposed as a contributing factor influencing lake marl deltaC-13. The universal application of a positive correlation between lake marl deltaO-18 and mean annual air temperature is questioned. Quantifications of mean summer and winter temperatures based on beetle analysis show a climatic optimum around 12 000 yr BP, a marked cooling around 11 000 yr BP and a strong amelioration at ca. 10 200 yr BP. These climatic events were accompanied by distinct changes in aquatic vegetation. Plant macrofossil and insect analyses indicate an open vegetation during the entire period studied. Biostratigraphical data reflecting local limnic and terrestrial vegetation and regional climate facilitate the interpretation of stable isotope data
    corecore